Source code for gluonnlp.data.corpora.large_text_compression_benchmark

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# pylint: disable=
"""Large Text Compression Benchmark.

The test data for the Large Text Compression Benchmark is the first 109 bytes
of the English Wikipedia dump on Mar. 3, 2006.
http://download.wikipedia.org/enwiki/20060303/enwiki-20060303-pages-articles.xml.bz2
(1.1 GB or 4.8 GB after decompressing with bzip2 - link no longer works).
Results are also given for the first 108 bytes, which is also used for the
Hutter Prize. These files have the following sizes and checksums:

File     Size (bytes)   MD5 (GNU md5sum 1.22)             SHA-1 (SlavaSoft fsum 2.51)
------   -------------  --------------------------------  ----------------------------------------
enwik8     100,000,000  a1fa5ffddb56f4953e226637dabbb36a  57b8363b814821dc9d47aa4d41f58733519076b2
enwik9   1,000,000,000  e206c3450ac99950df65bf70ef61a12d  2996e86fb978f93cca8f566cc56998923e7fe581

See http://mattmahoney.net/dc/text.html and
http://mattmahoney.net/dc/textdata.html for more information.

"""

__all__ = ['Text8', 'Fil9', 'Enwik8']

import os
import zipfile

from mxnet.gluon.utils import _get_repo_file_url, check_sha1, download

from ...base import get_home_dir
from ..dataset import CorpusDataset


class _LargeTextCompressionBenchmark(CorpusDataset):
    def __init__(self, root, segment, **kwargs):
        root = os.path.expanduser(root)
        os.makedirs(root, exist_ok=True)
        self._root = root
        self._segment = segment
        self._namespace = 'gluon/dataset/large_text_compression_benchmark'
        super().__init__(
            self._get_data(self.archive_file, self.data_file, segment, root, self._namespace),
            **kwargs)

    @staticmethod
    def _get_data(archive_file, data_file, segment, root, namespace):
        archive_file_name, archive_hash = archive_file
        data_file_name, data_hash = data_file[segment]
        path = os.path.join(root, data_file_name)
        if not os.path.exists(path) or not check_sha1(path, data_hash):
            downloaded_file_path = download(_get_repo_file_url(namespace, archive_file_name),
                                            path=root, sha1_hash=archive_hash)

            with zipfile.ZipFile(downloaded_file_path, 'r') as zf:
                zf.extractall(root)
        return path


[docs]class Text8(_LargeTextCompressionBenchmark): """Text8 corpus http://mattmahoney.net/dc/textdata.html Part of the test data for the Large Text Compression Benchmark http://mattmahoney.net/dc/text.html. The first 10**8 bytes of the cleaned English Wikipedia dump on Mar. 3, 2006. License: https://en.wikipedia.org/wiki/Wikipedia:Copyrights Parameters ---------- root : str, default '$MXNET_HOME/datasets/text8' Path to temp folder for storing data. MXNET_HOME defaults to '~/.mxnet'. """ archive_file = ('text8-6c70299b.zip', '6c70299b93b7e1f927b42cd8f6ac1a31547c7a2e') data_file = { 'train': ('text8', '0dc3edebc970dcc96137e7deda4d9995af9d93de') } def __init__(self, root=os.path.join(get_home_dir(), 'datasets', 'text8'), segment='train', max_sentence_length=10000): self._max_sentence_length = max_sentence_length super().__init__(root=root, segment=segment) # pylint: disable=access-member-before-definition if max_sentence_length: data = [] for sentence in self._data: for i in range(0, len(sentence), max_sentence_length): data.append(sentence[i:i + max_sentence_length]) self._data = data
[docs]class Fil9(_LargeTextCompressionBenchmark): """Fil9 corpus http://mattmahoney.net/dc/textdata.html Part of the test data for the Large Text Compression Benchmark http://mattmahoney.net/dc/text.html. The first 10**9 bytes of the English Wikipedia dump on Mar. 3, 2006. License: https://en.wikipedia.org/wiki/Wikipedia:Copyrights Parameters ---------- root : str, default '$MXNET_HOME/datasets/fil9' Path to temp folder for storing data. MXNET_HOME defaults to '~/.mxnet'. """ archive_file = ('fil9-e2a6a602.zip', 'e2a6a602be8d3f9712c92423581aa47e7ffd5906') data_file = {'train': ('fil9', '08caf9b1d5600233aa19cb6b25d7b798558304d3')} def __init__(self, root=os.path.join(get_home_dir(), 'datasets', 'fil9'), segment='train', max_sentence_length=None): self._max_sentence_length = max_sentence_length super().__init__(root=root, segment=segment) # pylint: disable=access-member-before-definition if max_sentence_length is not None: data = [] for sentence in self._data: for i in range(0, len(sentence), max_sentence_length): data.append(sentence[i:i + max_sentence_length]) self._data = data
[docs]class Enwik8(_LargeTextCompressionBenchmark): """Enwik8 corpus http://mattmahoney.net/dc/textdata.html Part of the test data for the Large Text Compression Benchmark http://mattmahoney.net/dc/text.html. The first 10**8 bytes of the English Wikipedia dump on Mar. 3, 2006. License: https://en.wikipedia.org/wiki/Wikipedia:Copyrights Parameters ---------- root : str, default '$MXNET_HOME/datasets/text8' Path to temp folder for storing data. MXNET_HOME defaults to '~/.mxnet'. segment train, test, valid, trainraw, testraw and validraw segments preprocessed with https://github.com/salesforce/awd-lstm-lm/blob/master/data/enwik8/prep_enwik8.py are provided. """ archive_file = ('enwik8-d25f6043.zip', 'd25f60433af3c02ec6d2dec2435e1732f42a1a68') data_file = { 'test': ('test.txt', '1389fdf312b253350a959d4fd63e5e9ae7fe74d4'), 'train': ('train.txt', 'eff044567358678cd81b9eda516cb146fdba7360'), 'val': ('valid.txt', '2076ad59caee0099b6c68e66f92d7ef7d0975113'), 'testraw': ('test.txt.raw', 'c30edaac372090c10a562b8777a6703fa3dd9f7e'), 'trainraw': ('train.txt.raw', 'd8a8d0ca2a95f20c9d243cb60a579a59d12b0f48'), 'valraw': ('valid.txt.raw', '2e6218a15c1d5c3c2d23f8092bf07bc24da0d922') } def __init__(self, root=os.path.join(get_home_dir(), 'datasets', 'enwik8'), segment: str = 'train'): super().__init__(root=root, segment=segment)