Model Catalog¶
Language Model¶
Language Model Model Zoo Index
Word Language Model¶
Dataset: Wikitext-2
Pre-trained Model |
Test Perplexity |
Training Command |
log |
---|---|---|---|
standard_lstm_lm_200_wikitext-2 1 |
101.64 |
||
standard_lstm_lm_650_wikitext-2 1 |
86.91 |
||
standard_lstm_lm_1500_wikitext-2 1 |
82.29 |
||
awd_lstm_lm_600_wikitext-2 1 |
80.67 |
||
awd_lstm_lm_1150_wikitext-2 1 |
65.62 |
Cache Language Model¶
Dataset: Wikitext-2
Pre-trained Model |
Test Perplexity |
Training Command |
log |
---|---|---|---|
cache_awd_lstm_lm_1150_wikitext-2 2 |
51.46 |
||
cache_awd_lstm_lm_600_wikitext-2 2 |
62.19 |
||
cache_standard_lstm_lm_1500_wikitext-2 2 |
62.79 |
||
cache_standard_lstm_lm_650_wikitext-2 2 |
65.85 |
||
cache_standard_lstm_lm_200_wikitext-2 2 |
73.74 |
Machine Translation¶
Sentiment Analysis¶
Sentiment Analysis Model Zoo Index
Through Fine-tuning Word Language Model¶
Dataset: IMDB
Model |
Test Accuracy |
Training Command |
log |
---|---|---|---|
lstm from scratch |
85.60% |
||
lstm with pre-trained model |
86.46% |
TextCNN¶
Dataset: MR
Model |
Cross-Validation Accuracy |
Training Command |
Log |
---|---|---|---|
TextCNN-rand 5 |
75.80% |
||
TextCNN-static 5 |
79.40% |
||
TextCNN-non-static 5 |
80.00% |
||
TextCNN-multichannel 5 |
80.00% |
Dataset: Subj
Model |
Cross-Validation Accuracy |
Training Command |
Log |
---|---|---|---|
TextCNN-rand 5 |
89.30% |
||
TextCNN-static 5 |
91.80% |
||
TextCNN-non-static 5 |
91.90% |
||
TextCNN-multichannel 5 |
92.10% |
Dataset: CR
Model |
Cross-Validation Accuracy |
Training Command |
Log |
---|---|---|---|
TextCNN-rand 5 |
79.50% |
||
TextCNN-static 5 |
83.10% |
||
TextCNN-non-static 5 |
82.90% |
||
TextCNN-multichannel 5 |
83.30% |
Dataset: MPQA
Model |
Cross-Validation Accuracy |
Training Command |
Log |
---|---|---|---|
TextCNN-rand 5 |
85.30% |
||
TextCNN-static 5 |
89.60% |
||
TextCNN-non-static 5 |
89.20% |
||
TextCNN-multichannel 5 |
89.60% |
Dataset: SST-1
Model |
Cross-Validation Accuracy |
Training Command |
Log |
---|---|---|---|
TextCNN-rand 5 |
44.30% |
||
TextCNN-static 5 |
48.10% |
||
TextCNN-non-static 5 |
47.00% |
||
TextCNN-multichannel 5 |
48.10% |
Dataset: SST-2
Model |
Cross-Validation Accuracy |
Training Command |
Log |
---|---|---|---|
TextCNN-rand 5 |
82.10% |
||
TextCNN-static 5 |
87.10% |
||
TextCNN-non-static 5 |
85.60% |
||
TextCNN-multichannel 5 |
85.80% |
Dataset: TREC
Model |
Cross-Validation Accuracy |
Training Command |
Log |
---|---|---|---|
TextCNN-rand 5 |
90.20% |
||
TextCNN-static 5 |
91.40% |
||
TextCNN-non-static 5 |
93.20% |
||
TextCNN-multichannel 5 |
93.20% |
Finetuning¶
Task: Sentence Classification¶
Dataset: MRPC
Pretrained Model |
Validation Accuracy |
Training Command |
Log |
---|---|---|---|
BERT-base |
88.70% |
Dataset: RTE
Pretrained Model |
Validation Accuracy |
Training Command |
Log |
---|---|---|---|
BERT-base |
70.80% |
Dataset: SST-2
Pretrained Model |
Validation Accuracy |
Training Command |
Log |
---|---|---|---|
BERT-base |
93% |
||
RoBERTa-base |
95.3% |
Dataset: MNLI-M/MM
Pretrained Model |
Validation Accuracy |
Training Command |
Log |
---|---|---|---|
BERT-base |
84.55%/84.66% |
||
RoBERTa-base |
87.69%/87.23% |
Dataset: XNLI(Chinese)
Pretrained Model |
Validation Accuracy |
Training Command |
Log |
---|---|---|---|
BERT-base |
78.27% |
Task: Question Answering¶
Dataset: SQuAD 1.1
Pretrained Model |
F1/EM |
Training Command |
Log |
---|---|---|---|
BERT-base |
88.53%/80.98% |
||
BERT-large |
90.97%/84.05% |
Dataset: SQuAD 2.0
Pretrained Model |
F1/EM |
Training Command |
Log |
---|---|---|---|
BERT-large |
77.96%/81.02% |
Task: Named Entity Recognition¶
Requisite: python3 and seqeval package: pip3 install seqeval –user
Dataset: CoNLL-2003
Pretrained Model |
F1 |
Training Command |
Log |
---|---|---|---|
BERT-large |
92.20% |
Task: Joint Intent Classification and Slot Labelling¶
Requisite: python3 and seqeval & tqdm packages: pip3 install seqeval –user and pip3 install tqdm –user
Dataset: ATIS
Pretrained Model |
F1/Accuracy |
Training Command |
Log |
---|---|---|---|
BERT-base |
95.83%/98.66% |
Dataset: SNIPS
Pretrained Model |
F1/Accuracy |
Training Command |
Log |
---|---|---|---|
BERT-base |
96.06%/98.71% |
- 1(1,2,3,4,5)
Merity, S., et al. “Regularizing and optimizing LSTM language models”. ICLR 2018
- 2(1,2,3,4,5)
Grave, E., et al. “Improving neural language models with a continuous cache”.ICLR 2017
- 3
Jozefowicz, Rafal, et al. “Exploring the limits of language modeling”.arXiv preprint arXiv:1602.02410 (2016).
- 4
Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., … & Klingner, J. (2016). “Google’s neural machine translation system: Bridging the gap between human and machine translation.”. arXiv preprint arXiv:1609.08144.
- 5(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)
Kim, Y. (2014). “Convolutional neural networks for sentence classification”. arXiv preprint arXiv:1408.5882.