Installation¶
Select your preferences and run the install command.
OS: Linux macOS Windows
Version: Stable Nightly Source
Stable Release.
Nightly build with latest features.
Install GluonNLP from source.
Backend: Native CUDA MKL-DNN CUDA + MKL-DNN
Build-in backend for CPU.
Required to run on Nvidia GPUs.
Accelerate Intel CPU performance.
Enable both Nvidia GPUs and Intel CPU acceleration.
Prerequisites:
Requires pip >= 9.. Python 3.5+ are supported.
Nightly build provides latest features for enthusiasts.
Command:
pip install --upgrade mxnet gluonnlp
# Here we assume CUDA 10.0 is installed. You can change the number
# according to your own CUDA version.
pip install --upgrade mxnet-cu100 gluonnlp
pip install --upgrade mxnet-mkl gluonnlp
# Here we assume CUDA 10.0 is installed. You can change the number
# according to your own CUDA version.
pip install --upgrade mxnet-cu100mkl gluonnlp
pip install --pre --upgrade mxnet https://github.com/dmlc/gluon-nlp/tarball/master
pip install --pre --upgrade mxnet-cu100 https://github.com/dmlc/gluon-nlp/tarball/master
pip install --pre --upgrade mxnet-mkl https://github.com/dmlc/gluon-nlp/tarball/master
pip install --pre --upgrade mxnet-cu100mkl https://github.com/dmlc/gluon-nlp/tarball/master
pip install --pre --upgrade mxnet
git clone https://github.com/dmlc/gluon-nlp --branch master
cd gluon-nlp && python setup.py install --user
pip install --pre --upgrade mxnet-cu100
git clone https://github.com/dmlc/gluon-nlp
cd gluon-nlp && python setup.py install --user
pip install --pre --upgrade mxnet-mkl
git clone https://github.com/dmlc/gluon-nlp
cd gluon-nlp && python setup.py install --user
pip install --pre --upgrade mxnet-cu100mkl
git clone https://github.com/dmlc/gluon-nlp
cd gluon-nlp && python setup.py install --user
Next steps¶
Checkout Apache MXNet Get Started for more options such as ARM devices and docker images.
For new users: MXNet Crash Course and other tutorials.
For experienced users: Packages & Modules and Performance tips.
For advanced users: Apache MXNet API and GluonNLP API.