Source code for gluonnlp.model.utils

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""Building blocks and utility for models."""
__all__ = ['apply_weight_drop']

import collections
import functools
import re
import warnings

from mxnet.gluon import Block, contrib, rnn
from mxnet.gluon.model_zoo import model_store
from ..data.utils import _load_pretrained_vocab
from .parameter import WeightDropParameter
from .lstmpcellwithclip import LSTMPCellWithClip

# pylint: disable=too-many-nested-blocks


[docs]def apply_weight_drop(block, local_param_regex, rate, axes=(), weight_dropout_mode='training'): """Apply weight drop to the parameter of a block. Parameters ---------- block : Block or HybridBlock The block whose parameter is to be applied weight-drop. local_param_regex : str The regex for parameter names used in the self.params.get(), such as 'weight'. rate : float Fraction of the input units to drop. Must be a number between 0 and 1. axes : tuple of int, default () The axes on which dropout mask is shared. If empty, regular dropout is applied. weight_drop_mode : {'training', 'always'}, default 'training' Whether the weight dropout should be applied only at training time, or always be applied. Examples -------- >>> net = gluon.rnn.LSTM(10, num_layers=2, bidirectional=True) >>> gluonnlp.model.apply_weight_drop(net, r'.*h2h_weight', 0.5) >>> net.collect_params() lstm0_ ( Parameter lstm0_l0_i2h_weight (shape=(40, 0), dtype=float32) WeightDropParameter lstm0_l0_h2h_weight (shape=(40, 10), dtype=float32, \ rate=0.5, mode=training) Parameter lstm0_l0_i2h_bias (shape=(40,), dtype=float32) Parameter lstm0_l0_h2h_bias (shape=(40,), dtype=float32) Parameter lstm0_r0_i2h_weight (shape=(40, 0), dtype=float32) WeightDropParameter lstm0_r0_h2h_weight (shape=(40, 10), dtype=float32, \ rate=0.5, mode=training) Parameter lstm0_r0_i2h_bias (shape=(40,), dtype=float32) Parameter lstm0_r0_h2h_bias (shape=(40,), dtype=float32) Parameter lstm0_l1_i2h_weight (shape=(40, 20), dtype=float32) WeightDropParameter lstm0_l1_h2h_weight (shape=(40, 10), dtype=float32, \ rate=0.5, mode=training) Parameter lstm0_l1_i2h_bias (shape=(40,), dtype=float32) Parameter lstm0_l1_h2h_bias (shape=(40,), dtype=float32) Parameter lstm0_r1_i2h_weight (shape=(40, 20), dtype=float32) WeightDropParameter lstm0_r1_h2h_weight (shape=(40, 10), dtype=float32, \ rate=0.5, mode=training) Parameter lstm0_r1_i2h_bias (shape=(40,), dtype=float32) Parameter lstm0_r1_h2h_bias (shape=(40,), dtype=float32) ) >>> ones = mx.nd.ones((3, 4, 5)) >>> net.initialize() >>> with mx.autograd.train_mode(): ... net(ones).max().asscalar() != net(ones).max().asscalar() True """ if not rate: return existing_params = _find_params(block, local_param_regex) for (local_param_name, param), \ (ref_params_list, ref_reg_params_list) in existing_params.items(): if isinstance(param, WeightDropParameter): continue dropped_param = WeightDropParameter(param, rate, weight_dropout_mode, axes) for ref_params in ref_params_list: ref_params[param.name] = dropped_param for ref_reg_params in ref_reg_params_list: ref_reg_params[local_param_name] = dropped_param if hasattr(block, local_param_name): local_attr = getattr(block, local_param_name) if local_attr == param: local_attr = dropped_param elif isinstance(local_attr, (list, tuple)): if isinstance(local_attr, tuple): local_attr = list(local_attr) for i, v in enumerate(local_attr): if v == param: local_attr[i] = dropped_param elif isinstance(local_attr, dict): for k, v in local_attr: if v == param: local_attr[k] = dropped_param else: continue if local_attr: super(Block, block).__setattr__(local_param_name, local_attr)
# pylint: enable=too-many-nested-blocks def _find_params(block, local_param_regex): # return {(local_param_name, parameter): (referenced_params_list, # referenced_reg_params_list)} results = collections.defaultdict(lambda: ([], [])) pattern = re.compile(local_param_regex) local_param_names = ((local_param_name, p) for local_param_name, p in block._reg_params.items() if pattern.match(local_param_name)) for local_param_name, p in local_param_names: ref_params_list, ref_reg_params_list = results[(local_param_name, p)] ref_reg_params_list.append(block._reg_params) params = block._params while params: if p.name in params._params: ref_params_list.append(params._params) if params._shared: params = params._shared warnings.warn('When applying weight drop, target parameter {} was found ' 'in a shared parameter dict. The parameter attribute of the ' 'original block on which the shared parameter dict was attached ' 'will not be updated with WeightDropParameter. If necessary, ' 'please update the attribute manually. The likely name of the ' 'attribute is ".{}"'.format(p.name, local_param_name)) else: break if block._children: if isinstance(block._children, list): children = block._children elif isinstance(block._children, dict): children = block._children.values() for c in children: child_results = _find_params(c, local_param_regex) for (child_p_name, child_p), (child_pd_list, child_rd_list) in child_results.items(): pd_list, rd_list = results[(child_p_name, child_p)] pd_list.extend(child_pd_list) rd_list.extend(child_rd_list) return results def _get_rnn_cell(mode, num_layers, input_size, hidden_size, dropout, weight_dropout, var_drop_in, var_drop_state, var_drop_out, skip_connection, proj_size=None, cell_clip=None, proj_clip=None): """create rnn cell given specs Parameters ---------- mode : str The type of RNN cell to use. Options are 'lstmpc', 'rnn_tanh', 'rnn_relu', 'lstm', 'gru'. num_layers : int The number of RNN cells in the encoder. input_size : int The initial input size of in the RNN cell. hidden_size : int The hidden size of the RNN cell. dropout : float The dropout rate to use for encoder output. weight_dropout: float The dropout rate to the hidden to hidden connections. var_drop_in: float The variational dropout rate for inputs. Won’t apply dropout if it equals 0. var_drop_state: float The variational dropout rate for state inputs on the first state channel. Won’t apply dropout if it equals 0. var_drop_out: float The variational dropout rate for outputs. Won’t apply dropout if it equals 0. skip_connection : bool Whether to add skip connections (add RNN cell input to output) proj_size : int The projection size of each LSTMPCellWithClip cell. Only available when the mode=lstmpc. cell_clip : float Clip cell state between [-cellclip, cell_clip] in LSTMPCellWithClip cell. Only available when the mode=lstmpc. proj_clip : float Clip projection between [-projclip, projclip] in LSTMPCellWithClip cell Only available when the mode=lstmpc. """ assert mode == 'lstmpc' or proj_size is None, \ 'proj_size takes effect only when mode is lstmpc' assert mode == 'lstmpc' or cell_clip is None, \ 'cell_clip takes effect only when mode is lstmpc' assert mode == 'lstmpc' or proj_clip is None, \ 'proj_clip takes effect only when mode is lstmpc' rnn_cell = rnn.HybridSequentialRNNCell() with rnn_cell.name_scope(): for i in range(num_layers): if mode == 'rnn_relu': cell = rnn.RNNCell(hidden_size, 'relu', input_size=input_size) elif mode == 'rnn_tanh': cell = rnn.RNNCell(hidden_size, 'tanh', input_size=input_size) elif mode == 'lstm': cell = rnn.LSTMCell(hidden_size, input_size=input_size) elif mode == 'gru': cell = rnn.GRUCell(hidden_size, input_size=input_size) elif mode == 'lstmpc': cell = LSTMPCellWithClip(hidden_size, proj_size, cell_clip=cell_clip, projection_clip=proj_clip, input_size=input_size) if var_drop_in + var_drop_state + var_drop_out != 0: cell = contrib.rnn.VariationalDropoutCell(cell, var_drop_in, var_drop_state, var_drop_out) if skip_connection: cell = rnn.ResidualCell(cell) rnn_cell.add(cell) if i != num_layers - 1 and dropout != 0: rnn_cell.add(rnn.DropoutCell(dropout)) if weight_dropout: apply_weight_drop(rnn_cell, 'h2h_weight', rate=weight_dropout) return rnn_cell def _get_rnn_layer(mode, num_layers, input_size, hidden_size, dropout, weight_dropout): """create rnn layer given specs""" if mode == 'rnn_relu': rnn_block = functools.partial(rnn.RNN, activation='relu') elif mode == 'rnn_tanh': rnn_block = functools.partial(rnn.RNN, activation='tanh') elif mode == 'lstm': rnn_block = rnn.LSTM elif mode == 'gru': rnn_block = rnn.GRU block = rnn_block(hidden_size, num_layers, dropout=dropout, input_size=input_size) if weight_dropout: apply_weight_drop(block, '.*h2h_weight', rate=weight_dropout) return block def _load_vocab(dataset_name, vocab, root, cls=None): if dataset_name: if vocab is not None: warnings.warn('Both dataset_name and vocab are specified. ' 'Loading vocab based on dataset_name. ' 'Input "vocab" argument will be ignored.') vocab = _load_pretrained_vocab(dataset_name, root, cls) else: assert vocab is not None, 'Must specify vocab if not loading from predefined datasets.' return vocab def _load_pretrained_params(net, model_name, dataset_name, root, ctx, ignore_extra=False, allow_missing=False): assert isinstance(dataset_name, str), \ 'dataset_name(str) is required when loading pretrained models. Got {}'.format(dataset_name) path = '_'.join([model_name, dataset_name]) model_file = model_store.get_model_file(path, root=root) net.load_parameters(model_file, ctx=ctx, ignore_extra=ignore_extra, allow_missing=allow_missing) def _get_cell_type(cell_type): """Get the object type of the cell by parsing the input Parameters ---------- cell_type : str or type Returns ------- cell_constructor: type The constructor of the RNNCell """ if isinstance(cell_type, str): if cell_type == 'lstm': return rnn.LSTMCell elif cell_type == 'gru': return rnn.GRUCell elif cell_type == 'relu_rnn': return functools.partial(rnn.RNNCell, activation='relu') elif cell_type == 'tanh_rnn': return functools.partial(rnn.RNNCell, activation='tanh') else: raise NotImplementedError else: return cell_type